
Credit Portfolios, Credibility Theory, and
Dynamic Empirical Bayes

Tze Leung Lai

Stanford University

June, 2012

1 / 31



Outline

◮ Structural models and reduced-form models of default risk

◮ Corporate bond data example

◮ Hedging credit risk with single-name or multi-name credit derivatives

◮ Insurance and credibility theory

◮ Dynamic empirical Bayes and application to evolutionary credibility theory

◮ Application to loan portfolios

2 / 31



Structural Models of Default Risk
◮ AT : asset value of the firm at maturity T of the zero-coupon bond.

◮ Merton’s model of debt and equity: the equity value at time t is given by
the Black-Scholes formula

Ve(t) = EQ

{

e
−r(T−t)(AT − D)+|At

}

= AtΦ(d1)− De
−r(T−t)Φ(d2),

where D is the bond’s face value and Q is the risk-neutral measure.
Similarly, the debt value at time t is

Vd(t) = EQ

{

e
−r(T−t) min(AT ,D)|At

}

= At − Ve(t).

◮ KMV Credit Monitor Model: probability of default at maturity is

P(AT < D) = Φ

(

−E(logAt)− logD

σ
√
T

)

.

◮ KMV’s distance to default is the # of standard deviations of the log asset
value from the log liability:

DD = {E(logAT )− logD}/(σ
√
T ).

◮ Black-Cox model: allows defaults to occur prior to bond’s maturity when
At = g(t)(≤ D).
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Reduced-form (Intensity-based) Models for Pricing Default

Risk

◮ A Cox process (also called doubly stochastic Poisson process) is often
used to model the default intensity of the bond’s issuer. The default
intensity λt is assumed to be governed by an exogenous stochastic
process Xt , t ≥ 0, so that λt = λ(Xt) and the stochastic dynamics of λt

are specified through Xt .

◮ Λ(τ ) is distributed as an exponential random variable ǫ1 with mean 1 that
is independent of {Xs , s ≥ 0}, where Λ(t) =

∫ t

0
λ(Xs)ds, we can use

λ(Xs) to generate τ by

τ = inf

{

t :

∫ t

0

λ(Xs)ds ≥ ǫ1

}

.
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Reduced-form (Intensity-based) Models for Pricing Default

Risk

◮ Consider a zero-coupon bond, with maturity date T and par value 1,
issued by a firm at time 0. Assume that there is a short-rate process
r(Xs) under the risk-neutral measure Q, such that the default-free bond
price is given by

p(0,T ) = EQ

{

exp

(

−
∫ T

0

r(Xs)ds

)}

.

◮ Assume λ(Xs) is the intensity process for the default time τ of the firm
and assume zero recovery at default. Then the price of the defaultable
bond at time 0 is

π(0,T ) = EQ

{

exp

(

−
∫ T

0

(r + λ)(Xs)ds

)}

.

◮ Calibration of default intensity process to market prices.
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Corporate Bond Data

◮ The parameters in the models of default risk are calibrated to market
prices. The calibrated models are then used to predict future bond prices
and their term structure.

◮ Nonparametric and substantive-empirical modeling

◮ Hutchinson, Lo and Poggio (1994) used neural networks, radial
basis functions and projection pursuit regression to estimate
nonparametrically a formula for option prices in terms of time
to maturity and moneyness.

◮ Chen, Lai and Lim (2011) used spline regression and time
series modeling of the discrepancies between actual and
Black-Scholes prices.

◮ Compared to the equity markets, bond markets are less liquid and are
over-the-counter for corporate bonds. The final transaction price on a
certain trade depends on negotiations between the dealer and the client,
which the theoretical price based on no arbitrage does not consider.
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Corporate Bond Data

◮ The dataset is provided by Benchmark Solutions, which comprises of
700K observations on over 3,700 different corporate bonds.

◮ Each observation contains trade information such as trade type and size,
time delays between successive trades, as well as trade price and
theoretical price calibrated by algorithms developed by Benchmark
Solutions.

◮ Also included are features of the underlying corporate bond, such as time
to maturity and coupon rate.

◮ The information is also given for at least 10 consecutive trades on the
same bond.
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Corporate Bond Data

◮ We have used statistical learning models using Lasso or MARS to fit the
discrepancies between the theoretical and actual prices
(substantive-empirical approach).

◮ The weighted mean average errors (WMAE) of the two semiparametric
models and the theoretical model to predict trade prices:

Lasso MARS Theoretical

WMAE 0.8346 0.8325 1.1392

◮ Statistical modeling of the discrepancies between theoretical and actual
prices improves the prediction result by about 27%.
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Hedging Credit Risk with Credit Derivatives (Single-name)

◮ To mitigate counterparty default risk, over-the-counter derivative
contracts incorporate netting, collaterization, and downgrade trigger
clauses.

◮ Many derivative contracts subject to counterparty default risk involve
cash flows at multiple times up to the contract’s expiration.

◮ credit default swap (CDS), CDS spread, CDS forward and options.
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Hedging Credit Risk with Credit Derivatives (Multi-name)

◮ The credit risk of a portfolio of corporate bonds (e.g. CDO, basket CDS,
credit index) can be mitigated by using a multi-name credit derivative.
The contingent claim of the derivative is on credit loss of the portfolio
involving K firms (“names”), with respective default times τ 1, · · · , τK .

◮ The default process Nt and the loss process Lt :

Nt =
K
∑

k=1

I{τk≤t}, Lt =
K
∑

k=1

l
k
I{τk≤t},

where lk is loss due to default of kth firm. Joint distribution of τ k?

◮ Cautionary tale: Warren Buffett (2002)
“Derivatives are financial weapons of mass destruction, carrying dangers
that, while now latent, are potentially lethal.”
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Correlated Default Intensities of Multiple Obligors

◮ Gaussian copula approach (Li, 2000; Schubert & Schönbucher, 2001):

◮ Let Gi be the distribution function of default time τi for the
ith obligor, 1 ≤ i ≤ M . Then Zi = Φ−1(Gi (τi )) is standard
normal. Assume that (Z1, · · · ,ZM) is multivariate normal and
has correlation matrix Γ.

◮ Factor models of dependence among default intensities (Vasicek, 1987;

Schönbucher, 2000)

◮ Decompose the default intensity process λi
t of the ith firm as

λi
t = µt + ν it , in which µt is the default intensity of a common

factor and ν it is that of an idiosyncratic component such that
µt , ν

1
t , · · · , ν

M
t are independent processes.
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Correlated Default Intensities of Multiple Obligors

◮ Mixture models for default intensities (Vasicek, 1991; Gordy, 2000)

◮ The mixture binomial model assumes that Xi = I{τi≤T} are
conditionally independent Bernoulli(pi ) given p1, · · · , pM and
that the pi ∼ Π with mean p and Cov(pi , pj) = τ for i 6= j .

◮ The mixing distribution Π induces correlations among the M

Bernoulli random variables.
◮ The mean and variance of the number of defaults up to time

T , denoted by #, are
E (#) = Mp, Var(#) = Mp(1− p) +M(M − 1)τ .
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Insurance Derivatives and Re-insurance Contracts

◮ A popular form of reinsurance involves excess-of-loss reinsurance
contracts covering excess cost layers in severe adverse events such as
hurricanes and earthquakes.

◮ Insurance derivatives provide the insurance industry with an alternative to
reinsurance for hedging exposures to catastrophic (CAT) risks.

◮ Insurance derivatives and excess-of-loss reinsurance contracts are priced
under the physical measure, using historical or actuarial data to estimate
the parameters of future losses.

◮ Pricing of insurance contracts uses credibility theory, which aims at
deriving a premium that balances the experience of an individual
(idiosyncratic) risk with the class risk experience (common factor in
finance).
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Empirical Bayes and Credibility Theory
◮ Empirical Bayes (EB) methods (Robbins 1956, 1964, 1983; Stein, 1956):

EB replaces the hyperparameters of a Bayes procedure by maximum
likelihood, method of moments or other estimates from the data. It
allows one to estimate statistical quantities (probabilities, functions of
parameters, etc.) of an individual by combining information from the
individual and those in a structurally similar class.

◮ Suppose there are I risk classes and let Yij denote the j th claim of the i th

class. Assume that (Yij , θi) are independent with E[Yij |θi ] = θi and
Var[Yij |θi ] = σ2

i , (1 ≤ j ≤ ni , 1 ≤ i ≤ I ).

◮ Assuming a normal prior N(µ, τ 2) for θi and letting αi = τ 2/(τ 2 + σ2
i /ni )

and Ȳi =
1
ni

∑ni
j=1 Yij , the Bayes estimate of θi (that minimizes the Bayes

squared error) is

E[θi |Yi1, · · · ,Yi,ni ] = αi Ȳi + (1− αi )µ,

◮ Plugging the method-of-moments estimates µ̂, σ̂2
i and τ̂ 2 into the Bayes

estimates yields the EB estimate (known as the credibility formula):

Ê[θi |Yi1, · · · ,Yi,ni ] = α̂i Ȳi + (1− α̂i )µ̂,

where α̂i = τ̂ 2/(τ̂ 2 + σ̂2
i /ni ) is the credibility factor for the i th class.
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Dynamic Empirical Bayes and Evolutionary Credibility

◮ Standard credibility models (Bühlmann & Gisler, 2005) are essentially
linear empirical Bayes.

◮ To generalize the linear EB theory, consider longitudinal data Yit for each
individual i . For example, an insurer’s data consist of claims of risk
classes over successive periods.

◮ Frees, Young and Luo (1999) replace Yij with Yit in their linear mixed
models (LMM) of the form

Yij = β
T
xij + b

T
i zij + ǫij .

◮ Bühlmann and Gisler (2005) further develop an evolutionary credibility
theory that assumes a dynamic Bayesian model for the prior means over
time. One such model is

µt = ρµt−1 + (1− ρ)µ+ ηt ,

where ηt are i.i.d. with mean 0 and variance V .
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Dynamic Empirical Bayes and Evolutionary Credibility

◮ This is a linear state-space model, µt are unobserved states undergoing
AR(1) and can be estimated from Yis , s ≤ t, by the Kalman filter µ̂t|t :

µ̂t|t = µ̂t|t−1 + ρ−1
Kt(Yt − µ̂t|t−11), µ̂t+1|t = ρµ̂t|t + (1− ρ)µ.

◮ Kt is the Kalman gain matrix defined recursively by the hyperparameters
V = Var(ηt), vt = Var(Yit |µt) and ρ.

◮ To estimate the hyperparameters by the method of moments, one needs
the cross-sectional mean Ȳt−1 of n independent observations that have
mean µt−1.

◮ An alternative and more direct approach is to replace µt−1 by Ȳt−1,
leading to

µt = ρȲt−1 + ω + ηt , where ω = (1− ρ)µ.
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Linear Dynamic EB via Linear Mixed Models (LMM)

◮ The alternative model of µt leads to the LMM

Yit = ρȲt−1 + ω + bi + ǫit ,

where ηt is absorbed into ǫit ; random effects bi are estimated by BLUP.

◮ This is much easier to extend to nonlinear models, in contrast to the
hidden Markov modeling approach that involves nonlinear filtering.
Standard statistical software packages in R and SAS are available.

◮ Due to the form of a regression model, one can easily include additional
covariates to increase the predictive power of the LMM:

Yit = ρȲt−1 + ai + β
T
xit + b

T
i zit + ǫit

◮ Lai and Sun (2012) have carried out a simulation study comparing the
performance of parametric estimation and one-step-ahead prediction
using LMM with that of Kalman filtering when the data are generated by
a linear state-space model. The simulation study shows that the LMM
yields results comparable to those of Kalman filtering.
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Dynamic EB & Generalized Linear Mixed Models (GLMM)

◮ Breslow and Clayton (1993) introduced the GLMM for longitudinal data
Yi,t to enhance generalized linear models by allowing subject-specific
regression parameters.

◮ The GLMM assumes yit to be conditionally independent given the
observed covariates xit and zit and such that yit has a conditional density
of the form

f (y |bi , zit , xit) = exp{[yθit − ψ(θit)]/σ + c(y , σ)},

in which σ is a dispersion parameter and µit = dψ/dθ|θ=θit satisfies

µit = g
−1(βT

xit + b
T
i zit),

where g−1 is the inverse of a monotone link function g .

18 / 31



Dynamic EB & Generalized Linear Mixed Models (GLMM)

◮ Suppose the prior distribution specifies that for each 1 ≤ t ≤ T , the µi,t

are i.i.d. with mean µt such that

g(µt) =

p
∑

j=1

θjg(Ȳt−j ), where Ȳs = n
−1

n
∑

i=1

Yi,s .

◮ This dynamic model for µt is an EB version of the Markov model
introduced by Zeger and Qaqish (1988), who models µt by
g(µt) =

∑p

j=1 θjg(Yt−j ), where g is a link function.

◮ Increase the predictive power of the model by including fixed and random
effects and other time-varying covariates of each subject i in the GLMM

g(µi,t) =

p
∑

j=1

θjg(Ȳt−j ) + ai + β
T
xi,t + b

T
i zi,t ,

using BIC for variable selection.

◮ Lai and Shih (2003) have shown by asymptotic theory and simulations
that the choice of a normal distribution, with unspecified parameters, for
the random effects bi in GLMM is innocuous.
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Prediction in GLMM

◮ Predicting the response of subject i at the next period entails estimating

µi,t+1 = g
−1(

p
∑

j=1

θjg(Ȳt+1−j ) + ai + β
′
xi,t+1 + b

′
izi,t+1)

◮ In general, we want to estimate some future function ψt+1 of the
unobserved bi . If we do not know φ,α,β and θ = (θ1, · · · , θp)′, we can
estimate them by MLE using all the observations up to time t. The
future value ψt+1(bi ) can then be estimated by

ψ̂t+1,i = Eφ̂t ,α̂t ,β̂t ,θ̂t
[ψt+1(bi )|data of the ith subject up to time t],

computed by the hybrid method of Lai, Shih and Wong (2006).
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Frailty Correlated Defaults

◮ Firms could be jointly exposed to some unobservable risk factors, the
effects of which is called “frailty”.

◮ Duffie et al. (2009) model the default intensity of firm i at time t as

λit = exp(a+ b · Vt + c · Uit + Yt + Zi )

◮ Vt : Treasury bill rate, and trailing stock index return.
Uit : firm’s “distance to default”, and firm’s trailing stock return.
Yt : “frailty process”, an unobservable macroeconomic covariate
Zi : an unobservable firm-specific covariate.

◮ Since the latent risk factors driving default can be changing over time, Yt

is assumed to be an Ornstein-Uhlenbeck (OU) process.

◮ This model is a special case of HMM.
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An Alternative Approach Using Dynamic EB via GLMM

◮ A simpler alternative to the HMM is the dynamic EB model via GLMM.

◮ Let πit denote the probability of default of firm i in the time interval
[t, t + 1).

◮ We model the default indicator function Yit as

Yit ∼ Bernoulli(πit),

logit(πit |Yi,t−1 = 0) = ρ logit(Ȳt−1) + ai + β′
Uit + b

′
iVt ,

where Ȳt−1 =
∑nt−1

i=1 Yi,t−1/(nt − 1) and ai and bi are random effects.

◮ This model captures the key features of the HMM and is much simpler to
implement.
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An Alternative Approach Using Dynamic EB via GLMM

◮ Data generated from the Frailty Model of Duffie et al.; 1 month-ahead
prediction. 500 companies; 24-months rolling window.
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Modeling Contagion in Default Intensities

◮ Default (or credit event) of one entity affects the default intensities of the
other entities in a credit portfolio.

◮ Davis and Lo (2001) proposed the following “mild” contagion model for
homogeneous firms. Instead of having a constant default intensity λ,
there is a higher intensity λ+ µ right after a firm has defaulted, which
persists for an exponential sojourn time after which it drops to the normal
level λ if there is no new default.

◮ Subsequent generalizations of this model: Brigo et al. (2006), Tavella &
Krekel (2006), Arnsdorff & Halperin (2007), Ding, Giesecke & Tomecek
(2009), Errais, Giesecke & Goldlerg (2010), Giesecke & Zhu (2011).

◮ We can include both frailty and contagion in the GLMM.
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Retail and Wholesale Loans

◮ Retail in banking means consumer-related activities while wholesale

means business-related transactions.

◮ Retail loans: auto loans, credit cards, house mortgages, etc.
◮ Wholesale loans: commercial loans, commercial real estate

loans, leases to businesses, corporate bonds, etc.

◮ Retail loans tend to be secured with collateral, and tend to have small
balances compared to wholesale counterparts.

◮ For retail loans, “default” means overdue payment for longer than 90
days. Thus, unlike corporate loans, a retail loan borrower can default and
incur a “loss given default” while still holding the loan until it is
foreclosed and taken off the bank’s balance sheet.
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Mortgages and Mortgage-Backed Securities

◮ One of the banks’ main business is residential mortgages, and the most
popular types are 15-year and 30-year fixed-rate mortgages.

◮ Since it is almost impossible to hedge the interest rate risk of residential
mortgages, most banks would sell them to government sponsored
enterprises (GSE) such as Ginnie Mae and Freddie Mac.

◮ The purpose of these GSEs is to expand the secondary mortgage market
by securitizing mortgages in the form of mortgage-backed securities
(MBS), allowing lenders to reinvest their assets into more lending and in
effect increasing the number of lenders in the mortgage market by
reducing the reliance on thrifts. Banks may also keep the securities on
their balance sheet. Under the Basel Accord, residential mortgages have a
50% risk weight versus mortgage backed securities with a 20% risk
weight.
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Application of Dynamic EB: Subprime Mortgage Loans
◮ 13, 000 subprime 2-28 ARM loans originated in 2004-2006.

◮ Multilogit model for loan default (Lai, Su & Sun):

◮ A retail loan has competing risks of default (r = 1) and
prepayment (r = 2); the case r = 0 corresponds to the loan
still “surviving.”

◮ Loans divided into 5 classes according to the obligors’ FICO;
Ycms (=0,1,2): response of m-th loan in class c at age s.
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Application of Dynamic EB: Subprime Mortgage Loans
◮ Staggered entry: s = (t − τ )+, where t is calendar time, τ (= τm) is the

origination date of m-th loan.

◮ Thus we can label the n loans at calendar time t by (c,m, s), where
s = 0 denotes that the loan has not been originated. Let

η(r)cms = log(
P{Ycms = r |Ycm,s−1 = 0}
P{Ycms = 0|Ycm,s−1 = 0} )

and Ȳ
(r)
s−1,t is the cross-sectional mean of I{Y ··,s−1=r} at t.

◮ Dynamic empirical Bayes model for panel data:

η
(r)
cms,t = ρ(r) log(

Ȳ
(r)
s−1,t

Ȳ
(0)
s−1,t

) + a
(r)
c + β(r)T

Xcms + b
(r)T
c Zt−1

◮ Xcms contains subject-specific covariates (loan size, loan
purpose, occupancy etc.)

◮ Zt−1 contains macroeconomic covariates (Calhoun & Deng)

◮ Competing risks: default and prepayment as risks to on-time interest
payment.
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Application of Dynamic EB: Subprime Mortgage Loans

◮ p̂t,i gives the predicted default probability of loan i in the next month at
calendar time t (fitted using a rolling window of 6 month).

◮ Reliability Diagram (Lai, Gross & Shen, 2011: Evaluating probability

forecasts)

◮ Group the 100 {p̂t,i : 1 ≤ t ≤ T , i ≤ nt} into J = 11 bins
(“risk buckets”) B1, · · · ,BJ

100p̂ 0 (0,.1] (.1,.2] (.2,.3] (.3,.4] (.4,.5] (.5,.6] (.6,.8] (.8,1] (1,2] (2,4.1]

Rel.freq .26 .12 .11 .11 .09 .07 .05 .07 .04 .06 .01
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Application of Dynamic EB: Subprime Mortgage Loans
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Conclusion

◮ We have proposed a dynamic EB model which provides flexible and
computationally efficient methods for modeling loan portfolios and
insurance claims.

◮ The dynamic EB approach pools the cross-sectional information over
individual time series to replace an inherently complicated HMM by a
much simpler GLMM.

◮ Replacing µt−1 by the cross-sectional mean Ȳt−1 in our dynamic EB
model (and thereby converting an HMM to a GLMM) is similar to using
GARCH instead of SV models.

◮ The simulation study in corporate defaults and the empirical analysis of
retail loans demonstrate the advantages of the dynamic EB approach.
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